Koefisien kapal merupakan suatu besaran yang merupakan fungsi dari dimensi utama kapal (main dimension). Koefisien–koefisien yang diperoleh akan digunakan dalam perhitungan rancangan kapal. Jenis koefisien kapal adalah sebagai berikut:
[sunting]Koefisien Bentuk (Cb)
Koefisien bentuk dihitung dengan menggunakan rumus berikut:
Dimana :
- V = Volume Carena
- L = Panjang Garis Air
- B = Lebar Kapal
- T = Sarat Kapal
Koefisien bentuk ini berfungsi untuk mengetahui bentuk lambung dari sebuah kapal rancangan yang mana semakin besar nilai sebuah koefisien bentuk, maka berdampak pada bentuk lambung yang gemuk. Sebaliknya pun demikian. Dalam Buku Teori Bangunan Kapal diberikan nilai batasan koefisien bentuk yaitu: (0,20 – 0,84). Untuk rancangan kapal–kapal penyeberangan yang ada sekarang pada umumnya menggunakan Cb yang besar. Hal ini bertujuan untuk mencapai sebuah kapasitas ruang muat yang lebih besar meski tidak sedikit yang menggunakan nilai Cb yang relatif kecil.
[sunting]Koefisien Water Line (Cwl) dan Koefisien Midship (Cm)
[sunting]Koefisien Water line
Koefisien Water line (CW) - (range: 0,70 – 0,90). adalah luas bagian kapal yang berada digaris air dibagi panjang pada garis air dikali lebar kapal. Nilai yang kecil menunjukkan kapal yang streamline seperti pada kapal layar atau kapal penumpang sedangan nilai yang besar menunjukkan kapal kecepatan rendah yang digunakan pada kapal barang atau kapal tangker.
[sunting]Koefisien midship
Koefisien Midship (CM) - (range: 0,50 – 0,995) adalah potongan melintang pada bagian tengah kapal, atau bagian terbesar yang dibagi dengan lebar (beam) x draft. Yang merupakan ratio antara bagian yang berada dibawah air dengan luas pesegi antara lebar dengan draft. Nilai yang kecil menunjukkan kapal yang streamline yang biasanya ditemukan pada kapal layar dan nilai yang besar biasanya pada kapal barang atau tangker.
[sunting]Koefisien prismatik
Koefisien prismatik adalah volume dibagi dengan panjang pada garis air dikali luas potongan dibawah garis air. Angka yang rendah menunjukkan bagian tengah kapal yang penuh sedang ujung-ujung yang lancip yang biasa digunakan pada kapal kecepatan tinggi sedangkan angka yang besar digunakan pada kapal kecepatan rendah.
[sunting]Perbandingan Ukuran Utama Kapal
Perbandingan ukuran utama kapal menentukan karakteristik sebuah rancangan kapal. Secara terperinci rasio ukuran utama dapat kita lihat sebagai berikut:
- B/T : Ratio ini menunjukkan karakteristik stabilitas kapal
- L/B : Ratio yang menunjukkan maneuvering kapal
- L/D : Ratio yang menunjukkan kekuatan konstruksi kapal, khususnya kekuatan memanjang
- B/T yang rendah akan mengurangi stabilitas kapal, sebaliknya B/T yang tinggi akan membuat stabilitas kapal menjadi lebih baik.
- L/B yang kecil akan memberikan kemampuan stabilitas yang lebih baik akan tetapi dapat juga menambah tekanan kapal
- L/B yang besar mengurangi kemampuan olah gerak (maneuver) kapal dan mengurangi pula stabilitas kapal
- L/D yang besar akan mengurangi kekuatan memanjang kapal, sebaliknya L/D yang kecil akan menambah kekuatan memanjang kapal.
- D/T : Ratio yang menunjukkan lambung timbul kapal, terutama berhubungan dengan daya apung cadangan
[sunting]Ukuran Berat Kapal
Untuk menyatakan ukuran suatu kapal dalam sebuah kapal rancangan, dapat ditentukan berdasarkan spesifikasi muatan kapal. Spesifikasi muatan kapal tersebut dapat ditinjau sebagai berikut:
- Ukuran menurut isi kapal.
- Atau ukuran menurut bobot atau berat kapal.
- Daya mesin kapal.
Bagi usaha penyeberangan, umumnya dalam pemilihan kapal akan mengambil kapal yang memiliki ruangan yang dapat menampung kendaraan yang akan diseberangkan sebanyak mungkin, bahkan ruangan yang lebih dari satu dek (geladak), agar daya muat kendaraannya besar. Sedang untuk angkutan sungai dan danau yang dipentingkan adalah muatan penumpang atau barang yang bisa diangkut. Untuk mengetahui daya muat atau ruang yang luas adalah ukuran menurut isi kapal, tepatnya net registered tonnage (NRT)
[sunting]Ukuran Menurut Isi
Untuk mengetahui tonnage isi kapal, diukur ruangan dalam kapal dengan alasan bahwa ruangan yang tertutup dan digunakan untuk pemuatan barang (di bawah atau di atas geladak) adalah faktor penting penentuan daya pendapatan (earning power) suatu kapal. Oleh karenanya ruangan tersebut dijadikan sebagai dasar perhitungan untuk pengukuran dan sebagai batas perhitungan ukuran, diambil tonnage dek (geladak ukur), yaitu geladak teratas untuk kapal yang memiliki kurang dari 3 dek lengkap (continous deck) atau geladak lengkap kedua dari bawah bagi kapal yang memiliki deck lengkap lebih dari 2 buah geladak lengkap.
Ada 2 macam ukuran menurut isi kapal yaitu Gross Tonage (GR) dan Net Tonage (NT)
[sunting]Gross Tonnage (GT)
Gross Tonnage atau dulu disebut Gross Register Tonnage atau dalam bahasa Indonesia disebut sebagai tonase kotor yaitu jumlah seluruh ruangan di bawah geladak ukur (Tonnage deck) dan ruangan-ruangan tertutup yang ada di atasnya dan dikurangi dengan ruangan-ruangan tertentu, yakni: ruangan cahaya dan angin, rumah kemudi (Wheelhouse), dapur, tangga, WC, hatchways di atas ½ % dari gross tonnage dan ruangan-ruangan yang menurut peraturan pengukuran terbuka (seperti open shelter deck). GRT ini untuk mendapatkan kapal-kapal (ship registration), surat ukur kapal. Arti ton dalam hal ini diartikan sebagai isi atau registered ton. Satu (1) ton sama dengan 100 cubicfeet atau sama dengan 2,83 M3 (1 M3 = 35,3165 cf).
Badan yang melakukan pendaftaran kapal ini (badan swasta) disebut classification society, yang akan menerbitkan sertifikat klasifikasi. Badan ini mengikuti pertumbuhan kapal, mulai dari pembuatan sampai dengan pemusnahan (from the cradle to the grave). Beberapa badan klasifikasi di dunia:
- Lloyd’s Register of shiping (L_R) di London.
- American Bureau of shipping (A-B) di New York.
- Bureau Veritas (B-V) di Paris.
- Nopske Veritas (N-V) di Oslo.
- Germanische Lloyd (G-L) di Berlin.
- Registro Italion (R-I) di Roma.
- Nippon Kaiji Kyokai (N-K) di Tokyo.
- Biro Klasifikasi Indonesia (BKI) di Jakarta.
[sunting]Perhitungan
Perhitungan tonase kotor dijelaskan di dalam Regulation 3 dari Annex 1 dalam The International Convention on Tonnage Measurement of Ships, 1969. Tergantung dari dua variabel:
- V adalah total volume dalam meter kubik (m³), dan
- K1 adalah faktor pengali berdasarkan volume kapal.
Faktor pengali K mempengaruhi persentase volume kapal yang dinyatakan sebagai tonase kotor. Untuk kapal kecil nilai K lebih kecil, sedang untuk kapal besar nilai K lebih besar. Nilai K bervariasi pada rentang antara 0.22 sampai 0.32 dan dihitung dengan rumus:
Setelah V dan K diketahui, tonase kotor dapat dihitung dengan menggunakan rumus:
Sebagai contoh, kita dapat menghitung tonase kotor suatu kapal dengan volume sebesar 10,000 m³.
-
- K1 = 0.2 + 0.02 × log10(V)
-
-
- = 0.2 + 0.02 × log10(10,000)
- = 0.2 + 0.02 × 4
- = 0.2 + 0.08
- = 0.28
-
Jadi besarnya tonase kotor/GT adalah:
-
- GT = K1 × V
- = 0.28 × 10,000
- = 2,800 tons
- GT = K1 × V
[sunting]Net Tonnage (NT)
NT atau sering juga disebut Regitered ton atau Net Tonnage, diperoleh dari pengurangan Gross Tonnase dengan isi ruangan-ruangan tempat kediaman awak kapal, (kamar nakhoda dan perwira-perwira, ruangan navigasi, tempat alat-alat serang (boatswain) tempat air ballast dan air minum, tempat pompa-pompa, mesin Bantu (donkey) dan ketel (boiler) tempat penyimpanan layar (tidak boleh lebih dari 21/2 % tempat mesin kapal). Berarti bahwa net tonnage adalah jumlah seluruh isi ruangan kapal yang tersedia untuk keperluan pengangkutan barang muatan atau barang dagangan.
Contoh Perhitungan
Untuk kapal dengan penumpang 12 orang atau kurang:
Dasar perhitungan tonase bersih berdasarkan ketentuan [3] tergantung kepada variabel berikut:
- V adalah total volume cargo dalam meter kubik (m³).
- D adalah jarak bagian atas lunas sampai bagian tepi bawah geladak dalam meter.
- d, adalah draft dalam meter.
Langkah pertama dalam menghitung NT adalah menghitung nilai K2, yang tergantung kepada Vc. Yang diperoleh dengan menggunakan rumus berikut:
Selanjutnya dengan menggunakan ketiga nilai tersebut perhitungan NT diperoleh dari rumus:
Di mana faktor (4d/3D)2 tidak boleh melebihi 1, dan nilai Vc × K2 × (4d/3D)2 tidak melebihi 0.25 GT, dan nilai akhir NT tidak boleh diterima bila hasilnya kurang dari 0.30 GT.
Untuk kapal dengan penumpang 13 orang atau lebih:
Dalam menghitung NT untuk kapal-kapal yang diizinkan mengangkut 13 atau lebih penumpang digunakan tambahan 3 variabel lain:
- GT adalah Tonase kotor kapal.
- N1 adalah jumlah penumpang di dalam kabin dengan tidak lebih dari 8 tempat.
- N2 adalah jumlah penumpang lainnya,
Pertama sekali dihitung pengali K3 atas dasar GT dengan menggunakan rumus berikut:
Selanjutnya dapat dihitung tonase bersih:
Di mana faktor (4d/3D)2 tidak boleh melebihi 1, sehingga Vc × K2 × (4d/3D)2 tidak akan lebih dari 0.25 GT, dan nilai akhir dari NT tidak boleh diterima kalau kurang dari 0.30 GT.
[sunting]Ukuran Menurut Bobot
Ukuran menurut bobot atau berat kapal, digunakan satuan longton ( 1 longton = 224 pound / lbs = 1.016 kg) atau satuan short ton (1 short ton = 907, 18 Kg), namun kalau tidak dinyatakan lain maka ton berat adalah longton. Ada 2 macam ukuran ton berat, yaitu:
- Tonase bobot mati (Inggris: deadweight tonnage disingkat DWT) adalah jumlah bobot/berat yang dapat ditampung oleh kapal untuk membuat kapal terbenam sampai batas yang diizinkan dinyatakan dalam long ton atau metrik ton. Batas maksimum yang diizinkan ditandai dengan plimsol mark pada lambung kapal. Tonase bobot mati didefinisikan sebagai perjumlahan dari bobot/berat berikut ini: muatan barang, bahan bakar, air tawar, air ballast, barang konsumsi, penumpang, awak kapal.
- Berat benaman atau disebut juga sebagai displacement tonnage adalah bobot yang sesungguhnya dari keseluruhan kapal, merupakan jumlah dari DWT dan LWT. Kalau tanpa muatan dan BBM, disebut LIGHT DISPLACEMENT, yang terdiri dari berat baja kapal, berat peralatan dan mesin penggerak beserta instalasi pembantu. Kalau termasuk muatan, BBM dan berat kapal sampai pada garis muat yang terdalam (to her deepes mark) disebut HEAVY DISPLACEMENT.
[sunting]Stabilitas Kapal
Salah satu penyebab kecelakaan kapal di laut ,baik yang terjadi di laut lepas maupun ketika di pelabuhan, adalah peranan dari para awak kapal yang tidak memperhatikan perhitungan stabilitas kapalnya sehingga dapat mengganggu keseimbangan. Secara umum akibatnya dapat menyebabkan kecelakaan fatal seperti kapal tidak dapat dikendalikan, kehilangan keseimbangan dan bahkan tenggelam yang pada akhirnya dapat merugikan harta benda, kapal, nyawa manusia bahkan dirinya sendiri. Sedemikian pentingnya pengetahuan menghitung stabilitas kapal untuk keselamatan pelayaran, maka setiap awak kapal yang bersangkutan bahkan calon awak kapal harus dibekali dengan seperangkat pengetahuan dan keterampilan dalam menjaga kondisi stabilitas kapalnya sehingga keselamatan dan kenyamanan pelayaran dapat dicapai.
[sunting]Titik-Titik Penting dalam Stabilitas
Titik-titik penting dalam stabilitas antara lain adalah titik berat (G), titik apung (B) dan titik M.
-
- M - Metacenter
- G – Titik berat (Centre of Gravity)
- B – Titik apung (Centre of Buoyancy)
- K – Lunas/Keel
[sunting]Titik Berat (Centre of Gravity)
Titik berat (center of gravity) dikenal dengan titik G dari sebuah kapal, merupakan titik tangkap dari semua gaya-gaya yang menekan ke bawah terhadap kapal. Letak titik G ini di kapal dapat diketahui dengan meninjau semua pembagian bobot di kapal, makin banyak bobot yang diletakkan di bagian atas maka makin tinggilah letak titik G-nya.
Secara definisi, titik berat (G) ialah titik tangkap dari semua gaya–gaya yang bekerja ke bawah. Letak titik G pada kapal kosong ditentukan oleh hasil percobaan stabilitas. Perlu diketahui bahwa, letak titik G tergantung daripada pembagian berat di kapal. Jadi selama tidak ada berat yang di geser/ditambah/dikurangi, titik G tidak akan berubah walaupun kapal oleng atau mengangguk/trim.
[sunting]Titik Apung (Centre of Buoyance)
Titik apung (center of buoyance) dikenal dengan titik B dari sebuah kapal, merupakan titik tangkap dari resultan gaya-gaya yang menekan tegak ke atas dari bagian kapal yang terbenam dalam air. Titik tangkap B bukanlah merupakan suatu titik yang tetap, akan tetapi akan berpindah-pindah oleh adanya perubahan sarat dari kapal. Dalam stabilitas kapal, titik B inilah yang menyebabkan kapal mampu untuk tegak kembali setelah mengalami senget. Letak titik B tergantung dari besarnya senget kapal (bila senget berubah maka letak titik B akan berubah / berpindah. Bila kapal menyenget titik B akan berpindah kesisi yang rendah.
[sunting]Titik Metasentris
Titik metasentris atau dikenal dengan titik M dari sebuah kapal, merupakan sebuah titik semu dari batas di mana titik G tidak boleh melewati di atasnya agar supaya kapal tetap mempunyai stabilitas yang positif (stabil). Meta artinya berubah-ubah, jadi titik metasentris dapat berubah letaknya dan tergantung dari besarnya sudut senget.
Apabila kapal senget pada sudut kecil (tidak lebih dari 150), maka titik apung B bergerak di sepanjang busur di mana titik M merupakan titik pusatnya di bidang tengah kapal (centre of line) dan pada sudut senget yang kecil ini perpindahan letak titik M masih sangat kecil, sehingga masih dapat dikatakan tetap.
[sunting]Ukuran dalam stabilitas
Ada beberapa ukuran-ukuran yang digunakan dalam stabilitas kapal seperti ditunjukkan dalam gambar berikut.
[sunting]KG – Adalah tinggi titik berat ke lunas/jarak/letak titik berat terhadap lunas
Nilai KB untuk kapal kosong diperoleh dari percobaan stabilitas (inclining experiment), selanjutnya KG dapat dihitung dengan menggunakan dalil momen. Nilai KG dengan dalil momen ini digunakan bila terjadi pemuatan atau pembongkaran di atas kapal dengan mengetahui letak titik berat suatu bobot di atas lunas yang disebut dengan vertical centre of gravity (VCG) lalu dikalikan dengan bobot muatan tersebut sehingga diperoleh momen bobot tersebut. Selanjutnya jumlah momen-momen seluruh bobot di kapal dibagi dengan jumlah bobot dan menghasilkan nilai KG pada saat itu.
Di mana,
- ∑M = Jumlah momen (ton)
- ∑W = jumlah perkalian titik berat dengan bobot benda (m ton)
- KM – adalah tinggi / jarak metacenter dari lunas.
- KM ialah jarak tegak dari lunas kapal sampai ke titik M, atau jumlah jarak dari lunas ke titik apung (KB) dan jarak titik apung ke metasentris (BM), sehingga KM dapat dicari dengan rumus:
- KM = KB + BM
Diperoleh dari diagram metasentris atau hydrostatical curve bagi setiap sarat (draft) saat itu.
[sunting]GM – Tinggi Metacentric:
Tinggi metasentris atau metacentris high (GM) yaitu jarak tegak antara titik G dan titik M. Dari rumus disebutkan:
- GM = KM – KG
- GM = (KB + BM) – KG
Nilai GM inilah yang menunjukkan keadaan stabilitas awal kapal atau keadaan stabilitas kapal selama pelayaran nanti
[sunting]BM – Radius Metacentric:
BM dinamakan jari-jari metasentris atau metacentris radius karena bila kapal mengoleng dengan sudut-sudut yang kecil, maka lintasan pergerakan titik B merupakan sebagian busur lingkaran di mana M merupakan titik pusatnya dan BM sebagai jari-jarinya. Titik M masih bisa dianggap tetap karena sudut olengnya kecil (100-150). Lebih lanjut dijelaskan bahwa:
Di mana :
- b = lebar kapal (m)
- d = draft kapal (m)
[sunting]KB (Tinggi Titik Apung dari Lunas)
Letak titik B di atas lunas bukanlah suatu titik yang tetap, akan tetapi berpindah-pindah oleh adanya perubahan sarat atau senget kapal. Menurut Rubianto (1996), nilai KB dapat dicari:
- Untuk kapal tipe plat bottom, KB = 0,50d
- Untuk kapal tipe V bottom, KB = 0,67d
- Untuk kapal tipe U bottom, KB = 0,53d
- Di mana d = draft kapal
Dari diagram metasentris atau lengkung hidrostatis, di mana nilai KB dapat dicari pada setiap sarat kapal saat itu
[sunting]Segitiga stabilitas
Bila suatu kapal senget maka titik apung akan bergerak sedangankan titik berat (gravitasi) tidak berubah. Karena gaya apung dan gravitasi sama besar dan searah, tetapi kalau kapal miring akan membentuk dua gaya yang paralel dengan arah yang berlawanan, mengakibatkan terjadi rotasi. Rotasi ini mengakibatkan kapal kembali ke posisi semula karena gaya apung dan gravitasi sama besar berlawanan arah akan saling menutup. Hal ini dikatakan sebagai pasangan (coupled) karena kedua gaya yang bekerja menghasilkan rotasi. Rotasi inilah yang menyebabkan terjadi keseimbangan kapal.
Jarak antara gaya apung dan gravitasi disebut sebagai lengan penegak. Pada gambar di atas lengan penegak merupakan garis yang ditarik dati titik gravitasi ke vektor gaya apung kapal. Untuk kemiringan yang kecil (0o sampai 7o ke 10o, metacenter tidak berubah), nilai lengan penegak (GZ) dapat diperoleh secara trigonometry.
Dengan menggunakan fungsi sinus untuk mendapatkan lengan penegak:

Dengan stabilitas awal (0o sampai 7o-10o) metacenter tidak berubah, dan fungsi sinus hampir linier (garis lurus) Oleh karena itu Lengan Penegak kapal < GZ proporsional terhadap ukuran tinggi metacenter, GM. Sehingga GM adalah ukuran awal stabilitas kapal
[sunting]Momen Penegak (Righting Moment/RM)
Moment penegak adalah ukuran stabilitas kapal terbaik. Menjelaskan kenapa kapal bisa mengatasi kemiringan dan kembali ke titik keseimbangan/stabilitas. Moment penegak adalah sama dengan lengan penegak dikali displacement kapal.
Contoh:
Suatu kapal mempunyai displacement sebesar 6000 LT dan mempunyai lengan penegak sebesar 2.4 FT bila dimiringkan 40 derajat. Berapa momen penegak kapal?
- RM = 2.4 FT x 6000 LT
- RM = 14,400 FT-Tons (disebut "foot tons")
Atau dalam ukuran metrik
- RM = 0,73 M x 6000LT
- RM =4384 M-ton
[sunting]Kondisi Stabilitas
Posisi Titik gravitasi dan Metacentre menunjukkan indikasi awal stabilitas kapal. Kalau terjadi permasalahan yang mengganggu stabilitas kapal maka dikelompokkan dalam:
Kondisi stabilitas | Gambar |
---|---|
Stabilitas positif Metacenter berada diatas titik grafitasi. Kalau kapal senget atan membentuk lengan penegak, yang mendorong kapal tegak kembali | |
Stabilitas netral Metacenter berhimpit dengan titik grafitasi. Kalau kapal senget tidak membentuk lengan penegak, sampai metacenter berpindah setelah senget 70 – 100 | |
Stabilitas negatip Titik gravitasi kapal berada di atas metacenter, bila kapal senget lengan penegak negatif terbentuk yang akan mengakibatkan kapal terbalik. |
[sunting]Kurva statistik stabilitas
Bila suatu kapal disengetkan melalui berbagai sudut senget dan lengan penegak untuk setiap derajat senget diukur maka dapat diperoleh kurva statistik stabilitas. Kurva ini adalah gambaran stabilitas kapal pada muatan tertentu.
Berbagai informasi bisa diperoleh dari kurva ini, di antaranya:
Rentang stabilitas: Kapal ini akan menghasilkan lengan penegak bila disengetkan dari 0o sampai 74o. (Kurva ini diasumsikan bahwa seluruh struktur utama kapal kedap air.)
Lengan penegak maksimum: adalah jarak terbesar antara gaya dari daya apung dengan gravitasi. Di sinilah para tenaga ahli perkapalan menghabiskan energinya.
Sudut maksimum lengan penegak: adalah sudut senget di mana lengan penegak mencapai puncaknya. Sudut bahaya: adalah separoh sudut lengan penegak maksimum.
Tidak ada komentar:
Posting Komentar